

Motocoin is a crypto-currency of a new kind. It is inspired by Bitcoin but has major difference. Bitcoin is

based on a scheme called proof-of-work. In this scheme miners perform some computations (called

work) on their computers and then use proof of that work to secure coin transactions and to get their

reward. Motocoin is similar to Bitcoin but instead of relying on a work done by computers it relies on a

work done by humans. This work consists of playing 2D moto-simulator game, hence the currency

name. People play the game and get rewarded for this. We call this scheme proof-of-play.

Proof-of-work can be briefly described as follows. You have block and you try to find number (called

nonce) so that hash of block together with nonce would be less than given target value. Once found it is

easy for everyone to check that it is correct.

Proof-of-play is different. Instead of searching for number you are trying to find input to game such that

level pseudo-randomly generated from block can be completed with this input. Instead of comparing

hash with target value you are checking that time that it took to complete level with this input is less

than given target time. Because having only one level per block would be bad there is additional nonce

value (not shown on diagram above) that is used in level generation. Any node can check that given level

can be completed with given input in required time.

Determinism

Game for proof-of-play should be deterministic.

Physics engines are usually implemented using

floating point arithmetic. But the problem with

floating point numbers is that depending on CPU,

compiler and compiler options they may give

slightly different results. This is unacceptable for

cryptocurrency because result must be the same

for all peers, otherwise network will be forked.

For this reason game in Motocoin is implemented

using only integer arithmetic.

Block Nonce

Hash(Block, Nonce) < Target

)

)

Proof-of-Work Proof-of-Play

Block Player input

Generate level based on

information in block. Check

whether playing this level with

given input leads to level

completion in time less than

target time.

Example of “integer magic” used in Motocoin source code.

Replay

Each replay is stored as list of player actions, e.g. press gas, wait 5 sec, release gas, rotate left, etc. It is

possible to make only 60 actions in one play, this is necessary to keep the blockchain small. Without this

restriction it would be possible to produce replays with thousands of actions and to severely bloat the

blockchain. Each action is stored as 16-bit integer which includes delta time to previous action and

action itself. If is action then ⌊ ⌋ is delta time to previous action and is action itself.

Time is measured in ticks, there are 250 ticks in second. Each replay takes no more than 960 bits.

Difficulty adjustment

There is no problem to adjust difficulty in proof-of-work. Network hashrate can be computed based on

mining speed and then it is easy to calculate necessary target value. But in proof-of-play there is no such

thing as network hashrate, therefore other approach is necessary.

The following method for difficulty adjustment is used in Motocoin:

1. We know the time period that it took to mine last blocks, denote this time by . Also we have a

list of times (in-game times, not real-life intervals between blocks) with which levels were completed in

last 1008 blocks.

2. Find median time in this list. This is such a time that half of the levels were completed faster than it

and half slower than it. Denote this time by .

3. We know that if target time was equal to than last blocks would be mined no longer than in

 time period.

 4. Now we know how long it took to mine last blocks with current target time and we assume that

if it would be equal to than it would take twice as long. So we can use linear inter/extra-polation to

find new target time with which last blocks would be mined with necessary speed (that is

approximately block in minutes).

5. If new target time is less than then use instead. If new target time is greater than seconds

than use seconds instead.

This algorithm is conservative that is it returns larger target time than it could be. With this algorithm

target time will never become too small to make mining impossible because in last blocks at least

 levels were completed in less time. It is yet remain to be seen how well it will approach target block

generation speed of 1 block in 5 minutes, but at least it will never make mining impossible and it will

decrease speed to prevent too fast block generation.

Bots

There are concerns that it is possible to make bots for this game. This is based on belied that “everything

is botable”. But in many games (for example Go) humans are still superior to computers. It isn’t easy to

make bot for game used in Motocoin. Pure brute force approach cannot be used because there are too

many possible actions that player can do and search tree grows too fast. Some very smart algorithm is

necessary that will require a lot of research. It is also necessary to distinguish levels which can be

completed from the ones that cannot to not waste time trying to complete them, this is also not an

easy task. Although theoretically bots are possible, I believe that this is not going to happen anytime

soon. If that would actually happen, that would not be an issue for Motocoin, because the difficulty

adjustment algorithm would prevent the bots from generating blocks too fast. It will be like transition

from CPU -> GPU -> ASIC for Bitcoin.

Level generation

Levels are generated using Perlin noise. There is a good description of Perlin noise:

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise is in fact a function . We assume that there is ground where value of this function is

less than certain threshold and sky if it is greater.

